Phần II - Không gian, thời gian và các lượng tử
Chương 5 - (5)
Sự tương tự của hấp dẫn với các lực mạnh, yếu và điện từ là ở chỗ, tất cả ba đều hậu thuẫn cho những lối đối xứng, chỉ có điều những đối xứng này trừu tượng hơn nhiều...

Đối xứng chuẩn
Chắc có lẽ bạn đã thấy một nhân vật còn chưa được đề cập tới trong thảo luận của chúng ta về lý thuyết lượng tử của các lực trong tự nhiên, đó là lực hấp dẫn. Căn cứ vào cách tiếp cận thành công mà các nhà vật lý đã sử dụng cho ba lực khác, bạn chắc cho rằng các nhà vật lý sẽ tìm kiếm một lý thuyết trường lượng tử cho lực hấp dẫn, một lý thuyết trong đó bó nhỏ nhất của trường lực hấp dẫn, tức graviton, sẽ là hạt truyền tin của nó. Thoạt nhìn, như bạn bây giờ sẽ thấy, gợi ý đó của bạn dường như hoàn toàn thích hợp, bởi lẽ lý thuyết trường lượng tử của ba lực phi hấp dẫn hé mở cho thấy rằng có một sự tương tự hoàn toàn giữa chúng và một khía cạnh của lực hấp dẫn mà chúng ta đã gặp trong Chương 3.
Xin nhắc lại rằng lực hấp dẫn đã cho phép chúng ta tuyên bố rằng mọi người quan sát, bất kể họ chuyển động như thế nào, đều hoàn toàn bình đẳng với nhau. Ngay cả những người mà chúng ta thường nghĩ họ chuyển động có gia tốc cũng có quyền nói rằng họ đứng yên, vì họ có thể gán lực mà họ cảm thấy cho một trường hấp dẫn mà họ được đặt vào. Theo nghĩa đó, lực hấp dẫn đã hậu thuẫn cho một đối xứng: nó đảm bảo rằng mọi quan điểm, mọi hệ quy chiếu đều thực sự tương đương với nhau. Sự tương tự của hấp dẫn với các lực mạnh, yếu và điện từ là ở chỗ, tất cả ba đều hậu thuẫn cho những lối đối xứng, chỉ có điều những đối xứng này trừu tượng hơn nhiều.
Để có một ý niệm sơ bộ về những nguyên lý đối xứng tinh tế hơn đó, ta hãy xét một ví dụ quan trọng. Như đã biết ở Chương 1, mỗi quark đều có ba “màu” (thường gọi là đỏ, lục và lam, mặc dù đây đơn giản chỉ là các nhãn chứ không có quan hệ gì với các màu trong thị giác chúng ta). Các màu này quyết định quark phải phản ứng như thế nào đối với lực mạnh, cũng hệt như điện tích của quark quyết định nó phải phản ứng như thế nào đối với lực điện từ. Tất cả những dữ liệu thu thập được cho thấy rằng có một đối xứng giữa các quark theo nghĩa tương tác giữa hai quark cùng màu (đỏ với đỏ, lục với lục và lam với lam) là hoàn toàn như nhau và tương tự, tương tác giữa các quark khác màu (đỏ với lục, lục với lam và lam với đỏ) cũng hoàn toàn như nhau. Thực tế, các dữ liệu còn cho thấy điều gì đó còn đáng ngạc nhiên hơn. Nếu ba màu – ba tích khác nhau của tương tác mạnh – mà quark mang tất cả đều được dịch chuyển theo một cách đặc biệt nào đó (nói một cách nôm na bằng ngôn ngữ màu sắc tưởng tượng của chúng ta, nếu đỏ, lục và lam đều bị dịch chuyển thành vàng, chàm và tím, chẳng hạn) và thậm chí những chi tiết của sự dịch chuyển đó thay đổi từ thời điểm này sang thời điểm khác, từ nơi này sang nơi khác, thì tương tác giữa các quark vẫn hoàn toàn không thay đổi. Vì lý do đó, chúng ta nói rằng Vũ trụ có đối xứng tương tác mạnh: nghĩa là tương tác mạnh không thay đổi bất kể các tích màu của nó dịch chuyển như thế nào, cũng hệt như chúng ta nói hình cầu có đối xứng cầu vì nó nhìn như nhau bất kể ta quay nó ra sao và nhìn nó dưới góc độ nào. Vì lý do lịch sử, các nhà vật lý còn gọi đối xứng này của tương tác mạnh là đối xứng chuẩn (gauge).
Và đây mới là điều căn bản. Cũng như sự đối xứng của mọi điểm quan sát khác nhau trong thuyết tương đối rộng đòi hỏi phải có lực hấp dẫn, những công trình của Hermann Weyl vào những năm 20 và của Dương Chấn Ninh và Robert Mills những năm 50 đã chứng tỏ rằng các đối xứng chuẩn cũng đòi hỏi sự tồn tại của các lực khác nữa. Tựa như một hệ thống kiểm soát môi trường rất nhạy giữ cho nhiệt độ, áp suất không khí và độ ẩm luôn luôn không thay đổi bằng cách bù trừ chính xác những ảnh hưởng từ bên ngoài, một số loại trường lực, theo Dương và Mills, cũng sẽ tạo sự bù trừ chính xác cho những dịch chuyển trong các tích của tương tác, bằng cách đó giữ cho những tương tác vật lý giữa các hạt hoàn toàn không thay đổi. Đối với trường hợp đối xứng chuẩn gắn liền với sự dịch chuyển trong các tích màu của quark, lực đòi hỏi không gì khác chính là lực mạnh. Điều này có nghĩa là, nếu không có lực mạnh, sẽ không có đối xứng chuẩn và vật lý cũng sẽ khác sau khi dịch chuyển các màu.
Lực hấp dẫn và lực hạt nhân mạnh có những tính chất hoàn toàn khác nhau (chẳng hạn, lực hấp dẫn yếu hơn lực mạnh rất nhiều và tác dụng trên khoảng cách rất xa). Tuy nhiên, chúng có một di sản chung bởi vì cả hai đều cần phải thực hiện một số đối xứng của Vũ trụ. Tương tự như vậy, lực hạt nhân yếu và lực điện từ cũng gắn liền với những đối xứng chuẩn điện từ. Như vậy, cả bốn tương tác đều liên hệ trực tiếp với các nguyên lý đối xứng.
Đặc điểm chung này của bốn lực dường như là một điềm tốt cho sự đề xuất được nêu ra ở đầu chương này. Cụ thể là trong tương đối rộng, chúng ta cần phải tìm kiếm một lý thuyết trường lượng tử của lực hấp dẫn, như các nhà vật lý đã phát minh ra các lý thuyết trường lượng tử của ba lực khác. Trong nhiều năm, lập luận này đã cổ vũ nhiều nhà vật lý xuất sắc đi theo con đường đó, nhưng thực tế cho thấy có quá nhiều chông gai và không có ai thành công đi được đến cùng. Dưới đây chúng ta sẽ hiểu tại sao lại như vậy

Truyện Giai điệu giây và bản giao hưởng vũ trụ Lời giới thiệu Chương I - Được kết nối bởi các dây(1) Chương I - Được kết nối bởi các day(2) Chương I - Được kết nối bởi các day(3) Chương 2 - Không gian, thời gian và người quan sát(1) Chương 2 - Không gian, thời gian và người quan sát(2) Chương 3 -Uốn cong và lượn sóng(1) Chương 3 -Uốn cong và lượn sóng(2) Chương 3 -Uốn cong và lượn sóng(3) Chương 3 -Uốn cong và lượn sóng(4) Chương 3 -Uốn cong và lượn sóng(5) Chương 3 -Uốn cong và lượn sóng(6) Chương 3 -Uốn cong và lượn sóng(7) Chương 3 -Uốn cong và lượn sóng(8) Chương 3 -Uốn cong và lượn sóng(9) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(1) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(2) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(3) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(4) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(5) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(6) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(7) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(8) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(9) Chương 5 - (1) Chương 5 - (2) Chương 5 - (3) Chương 5 - (4) Chương 5 - (5) Chương 5 - (6) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(1) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(2) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(3) Chương 6 Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(5) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(6) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(7) !!!3847_30.htm!!! Đã xem 377048 lần. --!!tach_noi_dung!!--

Phần II - Không gian, thời gian và các lượng tử
Chương 5 - (6)
Ở những thang khoảng cách cực ngắn, đặc tính trung tâm của cơ học lượng tử, tức là nguyên lý bất định, đã trực tiếp xung đột với đặc tính trung tâm của thuyết tương đối rộng, đó là mô hình hình học trơn tru của không gian (và của cả thời gian nữa)

--!!tach_noi_dung!!--
Thuyết tương đối rộng và cơ học lượng tử
Lĩnh vực áp dụng thông thường của thuyết tương đối rộng là ở những thang khoảng cách thiên văn. Ở những khoảng cách lớn như thế, theo lý thuyết của Einstein, khi không có khối lượng thì không gian là phẳng, như được minh họa trên Hình 3.3. Trong công cuộc tìm kiếm để hợp nhất thuyết tương đối với cơ học lượng tử, giờ đây chúng ta cần tập trung gắt gao và xem xét kỹ lưỡng những tính chất vi mô của không gian. Chúng ta minh họa điều đó trên Hình 5.1 bằng cách thu lại gần và phóng đại liên tiếp những vùng ngày càng nhỏ của cấu trúc không gian. Thoạt đầu, khi thu lại gần, chưa thấy có gì xảy ra; như chúng ta thấy trong ba mức phóng đại đầu tiên trên Hình 5.1, cấu trúc không gian vẫn còn có dạng về cơ bản là như nhau. Nếu lý luận theo quan điểm thuần túy cổ điển, thì chúng ta hẳn sẽ nghĩ rằng hình ảnh phẳng và yên tĩnh vẫn còn giữ mãi như thế cho tới tận những thang chiều dài nhỏ nhất. Nhưng cơ học lượng tử đã làm thay đổi kết luận đó một cách cơ bản. Mọi thứ, kể cả trường hấp dẫn, đều phải chịu những thăng giáng lượng tử cố hữu do nguyên lý bất định. Mặc dù những lý luận cổ điển suy ra rằng không gian trống rỗng có trường hấp dẫn bằng không, nhưng cơ học lượng tử lại chứng tỏ rằng về trung bình thì đúng là nó bằng không, nhưng giá trị thực của nó dao động lên xuống do các thăng giáng lượng tử. Hơn thế nữa, nguyên lý bất định cho chúng ta biết rằng kích cỡ những thăng giáng này của trường hấp dẫn sẽ càng lớn khi chúng ta tập trung chú ý tới vùng không gian càng nhỏ. Cơ học lượng tử còn chứng tỏ rằng không có gì thích bị dồn vào một góc cả: sự tập trung không gian càng hẹp sẽ dẫn tới những thăng giáng càng lớn.
Hình 5.1 Bằng cách phóng đại liên tiếp một vùng nhỏ của không gian, ta có thể thăm dò được những tính chất siêu vi mô của nó. Những ý định hợp nhất thuyết tương đối rộng với cơ học lượng tử đều vấp phải những bọt lượng tử sôi sục xuất hiện ở tầng phóng đại cao nhất.
Vì trường hấp dẫn được phản ánh bởi độ cong của không-thời gian, nên chính những thăng giáng lượng tử này được thể hiện bởi những biến dạng càng mạnh của không gian bao quanh. Chúng ta đã lờ mờ nhận thấy những biến dạng như vậy đã xuất hiện ở mức phóng đại thứ tư trên Hình 5.1. Bằng cách thăm dò tới những thang khoảng cách còn nhỏ hơn nữa, như đã làm ở mức phóng đại thứ năm trên Hình 5.1, chúng ta thấy rằng những thăng giáng lượng tử ngẫu nhiên của trường hấp dẫn tương ứng với những uốn cong ghê gớm đến nỗi không gian không còn giống một chút nào với một đối tượng hình học với độ cong mềm mại như là màng cao su mà ta đã xét ở Chương 3 nữa. Mà bây giờ nó có dạng sủi bọt, rối ren và vặn xoắn kỳ dị như được minh họa ở tầng trên cùng của Hình 5.1. John Wheeler đã đặt ra thuật ngữ bọt lượng tử để mô tả sự náo nhiệt được phát lộ bởi sự thăm dò ở mức siêu vi mô đó của không gian (và cả thời gian nữa), trong đó những khái niệm thông thường như trái phải, trước sau, trên dưới (và thậm chí cả quá khứ và tương lai nữa) đều mất hết ý nghĩa. Chính ở những thang khoảng cách cực ngắn như vậy đã xảy ra sự không tương thích giữa thuyết tương đối rộng và cơ học lượng tử. Khái niệm hình học trơn tru - nguyên lý trung tâm của thuyết tương đối rộng - đã bị những thăng giáng dữ dội của thế giới lượng tử ở những thang khoảng cách cực ngắn phá hủy. Như vậy, ở những thang khoảng cách cực ngắn, đặc tính trung tâm của cơ học lượng tử, tức là nguyên lý bất định, đã trực tiếp xung đột với đặc tính trung tâm của thuyết tương đối rộng, đó là mô hình hình học trơn tru của không gian (và của cả thời gian nữa).
Thực tế, sự xung đột này được thể hiện một cách hết sức cụ thể. Những tính toán nhằm hợp nhất các phương trình của thuyết tương đối rộng và của cơ học lượng tử thường cho một đáp số như nhau và hoàn toàn vô nghĩa: đó là giá trị vô hạn. Giống như cú quất roi vào tay học trò của các thầy đồ thời xưa, một đáp số vô hạn là cách thức của tự nhiên để nói với chúng ta rằng có một điều gì đó đã sai lầm [1]. Những phương trình của thuyết tương đối rộng không thể chịu nổi sự sôi của các bọt lượng tử.
Tuy nhiên, cần thấy rằng khi chúng ta quay trở lại với những thang khoảng cách thông thường (tức là đi theo dãy các tầng từ trên xuống dưới của Hình 5.1), thì những thăng giáng ngẫu nhiên, dữ dội ở các thang nhỏ sẽ triệt tiêu nhau khi lấy trung bình, theo cách giống hệt như tài khoản của anh bạn mắc nợ kinh niên của chúng ta không hề cho thấy là anh mắc nợ kinh niên và khái niệm hình học trơn của cấu trúc Vũ trụ lại trở nên chính xác. Điều này cũng tựa như khi xem một bức tranh thuộc trường phái hòa quyện vào nhau gây cho ta ấn tượng về một hình ảnh trơn tru, với độ sáng tối của nó biến thiên liên tục và mềm mại từ mảng này đến mảng khác. Nhưng khi tiến đến gần hơn, tức là ở những thang khoảng cách nhỏ hơn, bạn sẽ thấy rằng đó chỉ là ấn tượng bề ngoài: bức tranh bây giờ chỉ còn là một tập hợp của các điểm rời rạc, mỗi điểm tách rời khỏi các điểm khác. Cũng xin lưu ý rằng, bạn ý thức được bản chất gián đoạn của bức tranh chỉ khi xem nó ở những thang khoảng cách nhỏ, còn khi nhìn từ xa thì nó vẫn trơn tru như thường. Tương tự như vậy, cấu trúc của không-thời gian sẽ dường như là trơn, chỉ trừ khi ta thăm dò nó Chương 8 - Các chiều ẩn giấu(5) Chương 8 - Các chiều ẩn giấu(6) Chương 8 - Các chiều ẩn giấu(7) Chương 8 - Các chiều ẩn giấu(8) Chương 8 - Các chiều ẩn giấu(9) Chương 9 - 1 Chương 9 - 2 Chương 9 - 3 Chương 9 - 4 Chương 9 - 5 Chương 9 - 6 Chương 9 - 7 Chương 9 - 8 Chương 10 - Hình học lượng tử (1) Chương 10 - Hình học lượng tử (2) Chương 10 - Hình học lượng tử (3) Chương 10 - Hình học lượng tử (4) Chương 10 - Hình học lượng tử (5) Chương 10 - Hình học lượng tử (6) Chương 10 - Hình học lượng tử (7) Chương 10 - Hình học lượng tử (8) Chương 10 - Hình học lượng tử (9) Chương 10 - Hình học lượng tử (10) Chương 10 - Hình học lượng tử (11) Chương 11 - Sự xé rách cấu trúc của không gian (1) Chương 11 - Sự xé rách cấu trúc của không gian (2) [2]. Như vậy, tầng thứ năm trên Hình 5.1 là hình ảnh khái lược của phong cảnh siêu vi mô của Vũ trụ ở thang dưới chiều dài Planck. Để có một ý niệm về thang này, hãy hình dung một nguyên tử được phóng đại tới kích thước của Vũ trụ mà ta biết hiện nay, khi đó chiều dài Planck chỉ cỡ độ cao của một cây bình thường.
Như vậy, chúng ta thấy rằng sự không tương thích giữa thuyết tương đối rộng và cơ học lượng tử chỉ trở nên rõ ràng trong một phạm vi khá huyền bí của Vũ trụ. Vì vậy bạn có thể sẽ tự hỏi, liệu nó có đáng kể chúng ta phải bận tâm hay không? Thực tế, cộng đồng các nhà vật lý nhận thức được vấn đề đó, nhưng họ lại thích thú trở về với những nghiên cứu của họ trong đó những thang chiều dài lớn hơn nhiều so với chiều dài Plack và việc sử dụng cơ học lượng tử và /hoặc thuyết tương đối rộng sẽ không hề gặp một rủi ro nào. Tuy nhiên, có những nhà vật lý khác, họ trăn trở sâu sắc trước một thực tế là, hai cột trụ cơ bản của vật lý học, như chúng ta đã biết, lại không tương thích với nhau ở ngay trong cốt lõi của chúng, bất chấp có cần phải thăm dò tới những thang vi mô để làm nổi rõ vấn đề đó hay không. Họ lập luận: sự tương thích này chỉ ra một thiếu sót căn bản trong hiểu biết của chúng ta về vũ trụ vật lý. Ý kiến này dựa trên một quan điểm không thể chứng minh nhưng sâu sắc cho rằng, Vũ trụ - nếu chúng ta hiểu nó ở mức sâu nhất và cơ bản nhất - phải được mô tả bởi một lý thuyết nhất quán và lôgic trong đó các phần của nó phải được thống nhất một cách hài hòa. Và chắc chắn, bất chấp sự không tương thích đó quan trọng tới mức nào đối với những nghiên cứu riêng của mình, đa số các nhà vật lý đều nhận thấy khó có thể tin được rằng, ở cái mức sâu nhất đó, hiểu biết lý thuyết sâu xa nhất của chúng ta về Vũ trụ lại quy về sự chắp vá không phù hợp với nhau về mặt toán học của hai lý thuyết rất có sức mạnh nhưng lại xung đột với nhau.
Các nhà vật lý cũng đã rất nỗ lực để sửa đổi thuyết tương đối rộng cũng như cơ lượng tử để tránh sự xung đột đó, song những nỗ lực ấy, mặc dù rất táo bạo và thông minh, đều gặp hết thất bại này đến thất bại khác.
Điều đó thực sự đã diễn ra cho tới khi ra đời lý thuyết siêu dây [3].
[1] Trong sự phát triển của các lý thuyết lượng tử của ba lực phi hấp dẫn, các nhà vật lý cũng vấp phải những tính toán cho các kết quả vô hạn. Tuy nhiên, với thời gian, họ dần dần nhận thấy rằng những giá trị vô hạn đó có thể khử được nhờ một công cụ có tên là sự tái chuẩn hóa. Những giá trị vô hạn xuất hiện trong nỗ lực sáp nhập thuyết tương đối rộng và cơ học lượng tử còn nghiêm trọng hơn rất nhiều và không thể chữa chạy được bằng “liệu pháp” tái chuẩn hóa. Thậm chí mới đây thôi, các nhà vật lý mới nhận ra rằng những đáp số vô hạn đó chính là tín hiệu cảnh báo rằng lý thuyết đang được sử dụng để phân tích thực tại đã vượt ra ngoài phạm vi áp dụng của nó. Vì mục đích của những nghiên cứu hiện nay là tìm kiếm một lý thuyết có phạm vi ứng dụng, về nguyên tắc, là không có giới hạn, tức là một lý thuyết “tối hậu” hay lý thuyết “cuối cùng”, nên các nhà vật lý muốn tìm một lý thuyết trong đó các đáp số vô hạn không được xuất hiện, bất kể hệ vật lý được xem xét ở những điều kiện cực hạn tới mức nào.
[2] Cỡ của chiều dài Planck có thể hiểu được bằng cách dựa trên phương pháp luận mà trong vật lý được gọi là phương pháp phân tích thứ nguyên. Ý tưởng của phương pháp này như sau. Thường thường một lý thuyết được xây dựng như một tập hợp các phương trình, nhưng, nếu lý thuyết cần phải mô tả các hiện tượng tự nhiên thì những ký hiệu trừu tượng có mặt trong các phương trình đó phải liên hệ chặt chẽ với những đặc trưng vật lý. Đặc biệt, một điều quan trọng là chúng ta cần phải định nghĩa một hệ đơn vị. Ví dụ, một ký hiệu biểu diễn một độ dài nào đó. Nếu các phương trình chỉ rằng ký hiệu đó lấy giá trị 5, thì còn cần phải biết chiều dài đó là 5cm, 5km hay 5 năm ánh sáng v.v… Trong một lý thuyết có liên quan tới thuyết tương đối rộng và cơ học lượng tử, việc chọn hệ đơn vị xuất hiện một cách tự nhiên theo cách sau. Thuyết tương đối rộng dựa trên hai hằng số tự nhiên là vận tốc ánh sáng c và hằng số hấp dẫn G của Newton, còn cơ học lượng tử phụ thuộc vào một hằng số tự nhiên là h. Bằng cách xem xét thứ nguyên của các hằng số đó (ví dụ c là vận tốc nên bằng chiều dài chia cho thời gian, v.v…) ta có thể thấy rằng tổ hợp h thực sự có thứ nguyên chiều dài. Thay giá trị của các hằng số vào, ta nhận được giá trị 1,616, 10-33cm. Đây chính là chiều dài Planck. Đây chính là thang đo hay đơn vị tự nhiên của chiều dài trong bất kỳ lý thuyết nào có ý định sáp nhập thuyết tương đối rộng và cơ học lượng tử. Trong phần nội dung chính của cuốn sách chúng tôi chỉ lấy giá trị gần đúng của giá trị n mặt của tên giết người. Đó là nhờ đối xứng...-" href="index.php?tuaid=3847&chuongid=90">Chương 12 Cuộc tìm kiếm lý thuyết - m (7) Chương 12 Cuộc tìm kiếm lý thuyết - m (8) Chương 12 Cuộc tìm kiếm lý thuyết - m (9) Chương 12 Cuộc tìm kiếm lý thuyết - m (10) Chương 12 Cuộc tìm kiếm lý thuyết - m (11) Chương 12 Cuộc tìm kiếm lý thuyết - m (12) Chương 12 Cuộc tìm kiếm lý thuyết - m (13) Chương 12 Cuộc tìm kiếm lý thuyết - m (14) Chương 12 Cuộc tìm kiếm lý thuyết - m (15) Chương 12 Cuộc tìm kiếm lý thuyết - m (16) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (1) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (2) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (3) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (4) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (5) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (6) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (7) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (8) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (9) Chương 15 - Triển vọng Chương 15 - Triển vọng (1) Chương 15 - Triển vọng (2) Chương 15 - Triển vọng (3) Chương 15 - Triển vọng (4) Chương 15 - Triển vọng (5) ng và lượn sóng(3) Chương 3 -Uốn cong và lượn sóng(4) Chương 3 -Uốn cong và lượn sóng(5) Chương 3 -Uốn cong và lượn sóng(6) Chương 3 -Uốn cong và lượn sóng(7) Chương 3 -Uốn cong và lượn sóng(8) Chương 3 -Uốn cong và lượn sóng(9) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(1) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(2) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(3) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(4) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(5) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(6) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(7) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(8) Chương 4 - Những điều kỳ lạ trong thế giới vi mô(9) Chương 5 - (1) Chương 5 - (2) Chương 5 - (3) Chương 5 - (4) Chương 5 - (5) Chương 5 - (6) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(1) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(2) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(3) Chương 6 Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(5) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(6) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(7) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(8) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(9) Chương 6: Không có gì khác ngoài âm nhạc - những cơ sở của lý thuyết siêu dây(10) Chương 7 - Cái "siêu" trong siêu dây(1) Chương 7 - Cái "siêu" trong siêu dây(2) Chương 7 - Cái "siêu" trong siêu dây(3) Chương 7 - Cái "siêu" trong siêu dây(4) Chương 7 - Cái "siêu" trong siêu dây(5) Chương 7 - Cái "siêu" trong siêu dây(6) Chương 8 - Các chiều ẩn giấu(1) Chương 8 - Các chiều ẩn giấu(2) Chương 8 - Các chiều ẩn giấu(3) Chương 8 - Các chiều ẩn giấu(4) Chương 8 - Các chiều ẩn giấu(5) Chương 8 - Các chiều ẩn giấu(6) Chương 8 - Các chiều ẩn giấu(7) Chương 8 - Các chiều ẩn giấu(8) Chương 8 - Các chiều ẩn giấu(9) Chương 9 - 1 Chương 9 - 2 Chương 9 - 3 Chương 9 - 4 Chương 9 - 5 Chương 9 - 6 Chương 9 - 7 Chương 9 - 8 Chương 10 - Hình học lượng tử (1) Chương 10 - Hình học lượng tử (2) Chương 10 - Hình học lượng tử (3) Chương 10 - Hình học lượng tử (4) Chương 10 - Hình học lượng tử (5) Chương 10 - Hình học lượng tử (6) Chương 10 - Hình học lượng tử (7) Chương 10 - Hình học lượng tử (8) Chương 10 - Hình học lượng tử (9) Chương 10 - Hình học lượng tử (10) Chương 10 - Hình học lượng tử (11) Chương 11 - Sự xé rách cấu trúc của không gian (1) Chương 11 - Sự xé rách cấu trúc của không gian (2) Chương 11 - Sự xé rách cấu trúc của không gian (3) Chương 11 - Sự xé rách cấu trúc của không gian (4) Chương 11 - Sự xé rách cấu trúc của không gian (5) Chương 11 - Sự xé rách cấu trúc của không gian (6) Chương 11 - Sự xé rách cấu trúc của không gian (7) Chương 11 - Sự xé rách cấu trúc của không gian (8) Chương 11 - Sự xé rách cấu trúc của không gian (9) Chương 12 Cuộc tìm kiếm lý thuyết - m (1) Chương 12 Cuộc tìm kiếm lý thuyết - m (2) Chương 12 Cuộc tìm kiếm lý thuyết - m (3) Chương 12 Cuộc tìm kiếm lý thuyết - m (4) Chương 12 Cuộc tìm kiếm lý thuyết - m (5) Chương 12 Cuộc tìm kiếm lý thuyết - m (6) Chương 12 Cuộc tìm kiếm lý thuyết - m (7) Chương 12 Cuộc tìm kiếm lý thuyết - m (8) Chương 12 Cuộc tìm kiếm lý thuyết - m (9) Chương 12 Cuộc tìm kiếm lý thuyết - m (10) Chương 12 Cuộc tìm kiếm lý thuyết - m (11) Chương 12 Cuộc tìm kiếm lý thuyết - m (12) Chương 12 Cuộc tìm kiếm lý thuyết - m (13) Chương 12 Cuộc tìm kiếm lý thuyết - m (14) Chương 12 Cuộc tìm kiếm lý thuyết - m (15) Chương 12 Cuộc tìm kiếm lý thuyết - m (16) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (1) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (2) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (3) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (4) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (5) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (6) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (7) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (8) Chương 13 - Các lỗ đen theo quan điểm của lý thuyết dây - lý thuyết - M (9) Chương 15 - Triển vọng Chương 15 - Triển vọng (1) Chương 15 - Triển vọng (2) Chương 15 - Triển vọng (3) Chương 15 - Triển vọng (4) Chương 15 - Triển vọng (5) Chương 15 - Triển vọng (6) Hết